| 1st August | |
| :--- | :--- | :--- |
| Write down the exact value of $\sin 30^{\circ}$ | |
| There are x apples in a crate. | Prove $x^{2}-x-56=0$ |
| 2 of the apples are bad. | |
| Sesse chooses two apples from the | |
| crate, without replacement. | |
| The probability that he selects two | |
| bad apples is $\frac{1}{28}$ | |

| 2nd August |
| :--- | :--- | :--- |
| Here is a sketch of $\mathrm{y}=\cos (\mathrm{x})$ |
| Write down the coordinates of |
| point A |

\qquad

| 3rd August | |
| :--- | :--- | :--- |
| Shown is the graph $\mathrm{y}=\mathrm{f}(\mathrm{x})$ | |

| 4th August |
| :--- | :--- | :--- |
| Harry has rounded a number to 10 to one
 significant figure.
 Write down the upper bound and lower
 bound. |

\qquad

5th August	
	$\overrightarrow{A B}=\binom{2}{4}$ Corbettmoths Write down a vector that is perpendicular to $A B$ and twice the length
a is directly proportional to $\sqrt{ } \mathrm{c}$. w is inversely proportional to a^{3}. When $\mathrm{c}=49, \mathrm{a}=35$ When $\mathrm{a}=2, \mathrm{w}=16$. Find the value of w when $c=4$.	
The population of birds living on an island is decreasing exponentially. Martin has begun to monitor the population each year. Year 6 - Population 8000 Year 8 - Population 4000	What was the population in Year 2?
Two ships, A and B, leave a port at midday. A travels on a bearing of 095° at a speed of $18 \mathrm{~km} / \mathrm{h}$. B travels on a bearing of 113° at a speed of $\mathrm{y} \mathrm{km} / \mathrm{h}$. At 14:00 the distance between A and B is 30 km . Boat B was travelling at a slower speed than boat A Work out y, the speed of boat B.	

6th August	
Evaluate	
$16^{-\frac{3}{4}}$	

| 7 th August |
| :--- | :--- |
| A and B are similar cuboids |
| volume of A : volume of $\mathrm{B}=8: 1000$ |
| Work out |
| surface area of B : surface area of A |

\qquad

| 8th August |
| :--- | :--- |
| Simplify |
| $(\sqrt{32}+7 \sqrt{2})^{2}$ |
| |

\qquad

9th August	
$g(x)=15-x \quad h(x)=x^{3}$ Solve $g h(x)=140$	Corbettmoths
ABCDEFGH is a cuboid	Calculate the length of BH Find the size of angle BHF
Sketch the graph of $y=2^{x}$	
The nth term of a sequence is $n^{2}-10 n+30$ By using completing the square, show that every term is positive.	

\qquad

10th August	
	Corbettm α ths Work out an estimate for the distance the car travels in these 10 seconds
 Shown is the first 10 seconds of the journey of a car	Is your answer an underestimate or an overestimate? Explain your answer.
 A is a point on a circle. B is a point on another circle with equation $x^{2}+y^{2}=36$	radius of the smaller circle : radius of the large circle is $5: 7$ $A B=12$ Work out the size of angle AOB
Given $(a x+b)(x+4)(x+c) \equiv 2 x^{3}+19 x^{2}+49 x+20$ Find a, b and c	

\qquad

| 11th August | | |
| :--- | :--- | :--- | :--- |
| Velocity | | |
| (m/s) | | |
| Here is a velocity-time graph for 6 | | |

\qquad

12th August	
Write as a fraction $64^{-\frac{2}{3}}$	Corbettmoths
Donald saves some of his pocket money each week. He saves $8 p$ in week 1 , 16 p in week 2, 26p in week 3, 38 p and so on for 20 weeks.	Find the amount he saves in week 20.
	The area of the triangle is $90 \sqrt{3} \mathrm{~cm}^{2}$ Work out the value of x.
The circle C has equation $x^{2}+y^{2}=4$ The circle is reflected in the line $y=2$ to give circle D Circle D is translated by the vector $\binom{-1}{0}$	Draw a sketch of circle E
to give circle E	Write down the coordinates of the centre of circle E.

13th August	
	Write down the equation Corbettmoths of the curve shown
$f(x)=x^{2}+3 x+8$ show that $f(x+1)-f(x)=2 x+4$	
Solve the inequality $2 x^{2}+9 x+10>0$	
Hannah has some coins. Hannah has to pay £2.40 for a coffee. She picks 3 coins at random, without replacement, from her pocket. Work out the probability that she has chosen enough money to pay for the coffee.	

14th August			
Simplify fully $(x-5)(x-3)$ 6 $x_{n+1}=-3-\frac{x}{x_{n}^{2}}$			
Starting with $\mathrm{x}_{0}=-4$			
Find $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3}		\quad	
:---			
Explain the relationship between the values of $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3} and the equation $\mathrm{x}^{3}+3 \mathrm{x}^{2}+5=0$			

\qquad

17th August	
Expand $(3+\sqrt{ } 2)(1-\sqrt{ } 2)$	Corbettmoths
B, C and D are points on a circle of radius 8 cm . $A B$ and $A C$ are tangents to the circle. $A O=11 \mathrm{~cm}$	Work out the length of arc BDC
The area of the rectangle is greater than $10 \mathrm{~cm}^{2}$ Work out the range of possible values of x	

\qquad

18th August	
Find the nth term of the quadratic	
sequence with the first four terms	
10	33
64	103
and	

\qquad
19th August
Show using algebra
$1.0 \dot{2} \dot{4}=1 \frac{4}{165}$
A and B are points on the circumference
of a circle, centre O.
CA is a tangent to the circle.
Angle $C A B=2 x$

Prove that angle AOB = 4x
Give reasons for each stage of your working.

The diagram shows the circle
$x^{2}+y^{2}=40$ with a tangent at the point $(2,6)$

Find the area of the circle

Find the equation of the tangent

| 20th August |
| :--- | :--- |
| The cylinder has a surface area of |
| 972 cm^{2}. |
| Find x. |

\qquad

21st August	
	Find x
	By drawing an appropriate straight line, use your graph to find estimates for the solutions of $x^{2}-2 x-1=0$
 Shown is $\mathrm{y}=\mathrm{x}^{2}-\mathrm{x}-2$	Calculate an estimate for the gradient of the graph $y=x^{2}-x-2$ at the point where $\mathrm{x}=1$
	AOC is an equilateral triangle of side length 14 cm . OBD is a sector of a circle with centre O and radius 11 cm . Calculate the area of the shaded region as a percentage of the area of triangle AOC. Give your answer correct to 3 significant figures.

\qquad

22nd August	
Given $2^{y}=\frac{1}{16}$ Find y	Corbettmoths
Show the equation $x^{2}-5 x+1=0$ can be written in the form $x=5-\frac{1}{x}$	
Starting with $\mathrm{x}_{0}=3$, use the iteration formula $x_{n+1}=5-\frac{1}{x_{n}}$ twice to find an estimate of the solution of $x^{2}-5 x+1=0$	
Here are the first 5 terms of a quadratic sequence $\begin{array}{lllll}3 & 9 & 17 & 27 & 39\end{array}$ Find an expression, in terms of n, for the nth term of this quadratic sequence	
A solid sphere has a diameter of 12 cm . The sphere is made from glass. The density of the glass is $3.15 \mathrm{~g} / \mathrm{cm}^{3}$ Find the mass of the glass sphere.	

\qquad

23rd August	
	Find the area of the triangle in terms of x .
Given $y=\frac{5 \sqrt{3}}{2}$ Write an expression for y^{3}	
Speed (m / s)	Find t
The average speed from 0 to t seconds was $8.725 \mathrm{~m} / \mathrm{s}$	Find the deceleration for the final stage of the journey
The point $(-5,1)$ is the turning point of the graph of $y=x^{2}+a x+b$ Find a and b	

\qquad

\qquad

| 25th August |
| :--- | :--- | :--- |
| Find the exact length of the side |
| labelled w |

\qquad

27th August	
Write as a power of 2 $\sqrt[4]{32}$	Corbettm α ths
	Find the volume of liquid in the container
Find the coordinates of the minimum point of the curve with equation $y=x^{2}-6 x+7$	
Express in the form $\mathrm{a} \sqrt{7}+\mathrm{b}$ $\frac{\sqrt{7}+1}{\sqrt{7}-3}$	
$\begin{aligned} & f(x)=x+90 \\ & g(x)=\cos x \\ & \text { Draw } y=g f(x) \end{aligned}$	

\qquad

28th August	
Simplify fully $\frac{3 \cos \left(45^{\circ}\right)-\sin \left(45^{\circ}\right)}{\tan \left(30^{\circ}\right)}$	Corbettm α ths
	Show is the circle $x^{2}+y^{2}=8$ Find the equation of the tangent
In year 7 there are 20\% more girls than boys. $\frac{3}{20}$ of the girls are left handed of the boys are left handed	43 of the students in year 7 are left handed. Find how many students are in year 7
Two ships, A and B, leave a port at midday. A travels on a bearing of 085° at a speed of $18 \mathrm{~km} / \mathrm{h}$. B travels on a bearing of 113° at a speed of $y \mathrm{~km} / \mathrm{h}$. At 14:00 the distance between A and B is 30 km . Boat B was travelling at a slower speed than boat A Work out y, the speed of boat B.	

\qquad

\qquad

30th August	
	Corbettmoths Find the two possible values of θ
Write down the equation of the tangent to the circle $x^{2}+y^{2}=25$ at the point $(3,4)$	
There are 9 counters in a bag. 5 of the counters are red 4 of the counters are white. Tom takes at random three counters from the bag.	Work out the probability that the counters are all the same colour.
Shown is kite ABCD	Prove $\operatorname{Cos} B A D=1-\frac{x^{2}}{50}$

31st August	
C has coordinates $(-6,2)$ D has coordinates $(-2,-6)$ E has coordinates $(1,3)$ Find the equation of the line perpendicular to CD and passing through E.	Give your answer in the Corbettmoths form $a x+b y+c=0$, where a, b and c are integers.
The speed limit on a road is $50 \mathrm{~km} / \mathrm{h}$ It took Sam 60 seconds, correct to the nearest 5 seconds, to drive along a road that is 780 m long, correct to 2 significant figures.	Could Sam have broken the speed limit?
	Calculate the area of the triangle
Find the coordinates of the points where the line $x+5 y=37$ and the curve $y=x^{2}+x+2$ meet.	
Prove $(4 n+1)^{2}-(2 n-1)$ is an even number for all positive integers values of n.	

