Subject: Computer Science

Checklist for: Year 10 Examination, April 2022

Programming — Python

BROADWATER
SCHOOL

BY INCREMENTS CONQUER

What do you need to
know?

Where can you find the information?

First
Revision
Date

RAG

Second
Revision
Date

RAG

Third
Revision
Date

RAG

Fourth
Revision
Date

RAG

Structuring programs
into modular parts with
clear documented
interfaces to enable
them to design
appropriate modular
structures for solutions

https://www.bbc.co.uk/bitesize/guides/zh66pbk/revision/1

https://searchsoftwarequality.techtarget.com/definition/structured-

programming-modular-programming

Including authentication
and data validation
systems/routines within
their computer programs

https://www.bbc.co.uk/bitesize/guides/zfnny4j/revision/1

https://corporatefinanceinstitute.com/resources/knowledge/data-

analysis/data-validation/

Writing, debugging and
testing programs to
enable them to develop
the skills to articulate
how programs work and
argue using logical
reasoning for the
correctness of programs
in solving specified
problems

https://www.bbc.co.uk/bitesize/guides/zb33rwx/revision/1

https://www.aqga.org.uk/subjects/computer-science-and-

it/gcse/computer-science-8520/subject-content/aspects-of-

software-development

Designing and applying
test data (normal,
boundary and
erroneous) to the testing
of programs so that they
are familiar with these
test data types and the
purpose of testing
refining programs in
response to testing
outcomes.

https://www.bbc.co.uk/bitesize/guides/z4cck2p/revision/1

https://www.bbc.co.uk/bitesize/guides/z8n3d2p/revision/7

https://www.bbc.co.uk/bitesize/guides/zh66pbk/revision/1
https://searchsoftwarequality.techtarget.com/definition/structured-programming-modular-programming
https://searchsoftwarequality.techtarget.com/definition/structured-programming-modular-programming
https://www.bbc.co.uk/bitesize/guides/zfnny4j/revision/1
https://corporatefinanceinstitute.com/resources/knowledge/data-analysis/data-validation/
https://corporatefinanceinstitute.com/resources/knowledge/data-analysis/data-validation/
https://www.bbc.co.uk/bitesize/guides/zb33rwx/revision/1
https://www.aqa.org.uk/subjects/computer-science-and-it/gcse/computer-science-8520/subject-content/aspects-of-software-development
https://www.aqa.org.uk/subjects/computer-science-and-it/gcse/computer-science-8520/subject-content/aspects-of-software-development
https://www.aqa.org.uk/subjects/computer-science-and-it/gcse/computer-science-8520/subject-content/aspects-of-software-development
https://www.bbc.co.uk/bitesize/guides/z4cck2p/revision/1
https://www.bbc.co.uk/bitesize/guides/z8n3d2p/revision/7

Programming - Python

Comment — Text within the code that is ignored by the computer. A Python

comment is preceeded by a #.

This is an example of & comment

Output — Processed information that is sent out from a computer

Python

print ("Hello World!"™)
Hello World!

print (“Hello”, “World!"™)
Hello World!

print ("Hello"+"World!"}

HelloWorld

Pseudocode
OUTEUT “Hello Worl

Relational Operators — Allows the Comparison of values

Less than <
Greater than 2
Equai to =
Not equal to I=
Less than or equal to o
Greater than or equal to ==

Boolean Operators
BND |(and [T <
QR or T <
NOT | not |mot

R L)

-» False
7 >2 | ->» True
==, -» False
—-» True

-» False

-» True

-> False
-> False
-> True

Sequencing represents a set of steps. Each line of code will have some
operation and these operations will be carried out in order line-by-line

IF .. ELSE..

IF ... ELSE IF ... ELSE

IF i > 2 THEN
3 € 10
ENDIF

IFi=>2
3 € 10

ZLIE
& 2

ENDIF

THEN

IF i =2 THEN
3 € 10

ZLSE IF i==3
& 2

TLIE
5 €1

ENDIF

if i = 2:

j=140
elif i==3:

=3
else:

=1

print (“Hello\nWorld!”) R I] .
Iteration Sometimes we wish the code to repeat a set of instructions
Hello 2 =1 a =1
Warld! b=2 b+~ 2 WHILE loops are used when the we do net know beforehand the number of
c=a+b c~—ath iterations needed and this varies according to some condition.
print (c) -= 3 OUTPUT o
Input — Data sent to 3 computer to be processed (T\
= | - ~
print (“Enter name"} OUTEUT “Enter name" Using + operator for concatenation * i .
while {x < 10}):
name=input (] name € USERINFUT =
) ' s = 'Hells ¢ a ~ 'Hello - ==m=el
print ("Hella"”, name) QUTEUT “Hello®™, nam= b = "World’ b — ‘World"
print (“Enter age") QOUTPUT “Entesr age” c=a+hb c+~—a+h
age=int (input (]] age « USERINEUT print(c) -> Hello W CUTDUT c
Assignment - The allocation of data values to varizbles, constants, arrays and Random number T s J
other data structures so that the values can be stored. 6'“«;,5""" - m?’,.—" b LELH =+
Random import random RANDOM INT (0,9} Rt
* Vaorighle — Value that can change during the running of a program. By integer random_randinc {0, 3) "
convention we use lower case to identify variables (eg a=12) - . — Car tnr et -
* Constont—Value that remains unchanged for the duration of the program. By = random-choicel a’, b, C | Stop __‘;
convention we use upper case letters to identify constants. (e g. PI=3_141) Random value random.random()
from0tol
Data Types while True: WEILE TRUE
integer age = 12 age « 12 Selection represents a decision in the code according to some condition. The print{"Hello World") QUTEUT “Hello World”
— - - - condition is met then the block of code is executed otherwise it is not. Often ENDWHILE
Fioat {reai] number height = 1.52 heighs & 1Z alternative blocks of code are executed according to some condition.
Character a = 'a a & at ==0 =€ 0
Seri ftiple cha name = "Barc” neme € “Bazi” while a<4: WEILE a < 4
tring — multiple characters | TATS A S x=RENDOM INT{) Let x = Rardam print{a) QUTEUT a
Baolean (true/false) a = True a € Trus IF % - 10 TEEN a=at3 a€a+3
= False b & Fzalse . ENDWHILE
Arithmetic Operators ;o FOE loops are used when we know before hand the number of terations we wish
— e,
_ < Isx < 107 to make.
e T+z =39 7tz T
Subtract T - 2 =5 T -2 o for a in range(3): FOR a — 0 TO 3
Muttiply 7+ 3 = 14 oo o print{a) OUTEUT a
Divide 4/2 =1z 17z Lty =0 ENDFOR
power 2 = 3 =8 RS E
Integer division T/2 =23 7 DIV 2
Modulus (remainder) T&2 =1 7 MOD 2

Nested structures - Use constructs [e.g. WHILE, FOR, IF)insideanother.

use a nested FOR loopto | for 1 in range (10):

print out a grid

Use a nested while and if
to print out only even
numbers

Lists
Create a list
Access element by index pos
Append item to list
Remowve item from list

Remove item from list by
index
Insert item into list

Number of elements in o list
Get index pos of item in list

Concatenating lists

Loop through list

Reverse elements in a list

Order elements in a list

2D lists - A list if lists

or i in range (10):

T ("x " and="")

shapes=["sqguares", "circle™]
shapes[l] -= circle
shapes._append (“triangle™)
shapes. remove (“circle™)

shapes.pop(l)

shapes.insert (2, "rectangle”)
len (shapes)
shapes._index(“triangle™)

"

shapesGroupl [“square”, "circle”]

shapesGroupZ=["triangle”]

shapes=shapesGroupl+shapestCroup

for i in range {len{shapes)):
print{shapes[i])

shapes.reverse ()

shapes._sort()

Concatenation -merge multiple strings | 3="halla ¥
together b="world"”
c=ath
print (e} -=
hellc world

student = “Hermions"
student.index(*i")

Return the position of a character
If there is more than 1 of the same
character the position of the first
character is returmed.

Find the character at a spedified student = “Hermione"
position print (student[2]) —-> ¢

sub strings - select parts of a string
Example student="Harry Potter”
Output the first two characters | print {studenc[0:2]) Ha
Output the first three characters | print (student[:3]) Har
Output characters 2-4 print (studenc[2:5]) Rry
Output the last 3 characters print {student[-3:]} Tar
Dutput a middle set of print (student [4:-31) ¥ Pot

characters

*A negative value is taken from the end of the string.

Subroutines are a way of managing and organising programs in a structured

way. This allows us to break up programs into smaller chunks.

* (Can make the code more modular and more easy to read as each function
performs a specific task.

* Functions can be reused within the code without having to write the code
multiple times.

* Procedures are subroutines that do not return values
* Functions are subroutines that have both input and output

Procedure: SUE greeting() def greeting{):
No input QUTEUT “hella™ print (“hello®)
parameters or ENDSUB

return call: greeting(}

Procedure: One SUB def greeting(name} :

Cregte o 2D list d = [[23, 14, 171, [12, 18, 37],
[18, &7, B831]

Another way to a =

create g 20 iist b =
d =

Access element by d[1][2] —= 37

imdex position

Strings

len (“Hello™

LEN{"Hello")
ORD{"a")

CHE.{101)

Get length of & string
Character to character code | ord ("a") -
Character code to character | chr (101) -=>

String to integer a=int (™12"} a=INT ("12")}
String to float a=float (™12._3"} a=FLOAT (™12.3"}
integer to string a=str (12} a=STR {12}

real to string a=str(1l2_3} a=STR{1Z_3)

input greeting (name) print ("Hello", K nams}

parameter, no QUTEUT

return “Hello”™, name greeting {“grey”}
ENDSUB

Function: SUB addin} def addin):

1 input a -0 a=0

parameter, and
1 return value

Function:

Two input
parameters, and
1 return value

FOR a ~ 0 TO n
a~a+t+n
ENDFQR

RBETUEN a

ENDSUB

5UB (numl,h num2)
sum=numl+num2
return sum

for a in range(n+l) :

a=atn

return a

def add (numl, num?2} :
sum=numl+num2
return sum

greeting(l, 2)

The scope of a variable determines which parts of 2 program can access and uss
that variable.

A global wariable is a variable that can be used anywhere in a program. The issue
with global variables iz that one part of the code may inadvertently modify the
value because global variables are hard to track.

A local variable is a variable that can only be accessed within a cerain block of
code typically within a function. Local variables are not recognized outside a
function unless they are retumed. There is no way of modifying or changing the
behavior of a local variable outside its scope.

Global variables need to defined throughout the running of the whole program.
This is an inefficient use of memory resources. Local variables are defined only

when they are needed an so have less demand on memorny. Local variables only
exist within the subroutine.

Reading and writing files

Open file Whatever we are doing to a file whether we are reading, writing or
adding to or modifying a file we first need to open it using:

open (filename, access mods)

There are a range of access mode depending on what we want to do to the file, the
principal ones are given below:

Access Mode @ Description

r Opens a file for reading only

W Opens a file for writing only. Create a new file if one does not
exist. Overwrites file if it already exists.

a Append to the end of a file. Create a new file if one does not
exist.

Reading text files

read —Reads in the whole file into
single string

f=open ("filetxt","c")
print (f.read())

f_ closa()

readline — Reads in each line one ata f=open ("file._t=t"
time print (f.readline (
print (f_readline(})

print (f.readline (})
f_ elosel)

readlines — Reads in the whole file into | £=open ("file. txt™, "r")

alist print (f.readlines ()}
f_ closel()
Wrriting text files
Write in single lines ata | £11==cpen("days
time file.
file.
file & ("Wednesday'n")

file_ close=()

say=["How'n", "are'\n", "you'n"]
=, Tt
file.writelines (say)
file.close()

Write in a list

Data Validation Routines

Check if an entered string has a
minimurm length

Check is g string is empty

Check if dota entered lies within
a given range

Authentication Routine
QUIPUT “Enter Usernams"
username € USERINEUT
QUIPUT “Enter Password”
password € USERINFUT

WHILE username != "bart"

OUTPUT “Login failed"”
CUTPUT “Enter Usernams"
username < USERINPUT
CUTDUT "Enter Password”
password € USERINPUT

ENDWHEILE

OUTPUT “Enter String”
s € USERINFUT

IF LEN(S) > & THEN
OUTFUT “STRING COE"
ELSE

QUTEUT “TOQ SHORT™
ENDIF

OUTIPUT “Enter String”
s € USERINEUT

IF LEN(5) = 0 THEN
QUIPUT “EMPTY STRING™
ENDIF

QUIPUT “Enter number”™ s num

USERINPUT

IF num > 1 AND num < 10
OUTEUT “Hithin range"™
ENDIF

COR password !="abc®

QUTEUT “Login Successiul®”

Debugging

Syntax errors — Errors in the code that mean the program will not even run at all.
Mormally this is things like missing brackets, spelling mistakes and other typos.

Runtime errors — Errors during the running of the program. This might be because
the program is writing to a memory location that does not exist for instance. eg.

An array index value that does not exist.

Logical errars - The program runs to termination, but the output is not what is

expected. Often these are arithmetic errors.

Test data

Code needs to be tested with a range of different input data to ensure that it
works as expected under all situstions. Data entered need to be chedked to ensure

that the input values are:
* within a certain rangs
= in correct format
* the correct length

* The comrect data type (eg float, integer, string)

The program is tested using nommal,

erroneous or boundary data.

Mormal data - Data that we would normally expect to be entered. For example for
the age of secondary school pupils we would expect integer values ranging from 11
to 13,

Erroneocus data - Data that are input that are clearly wrong. For instance, if some
entered 40 for the age of a school pupil. The program should identify this as
imvalid data but at the same time should be able to handle this sensibly which
returns a sensible message and the program does not crash.

Boundary data - Data that are on the edge of what we might expect. Forinstance
if someone entered their age as 10, 11, 1% or 20.

Q1.

Write a Python program that inputs a password and checks if it is correct.

Your program should work as follows:

. input a password and store it in a suitable variable
. if the password entered is equal to secret display the message welcome
. if the password entered is not equal to secret display the message Not welcome.

You should use meaningful variable name(s), correct syntax and indentation in your answer.

The answer grid below contains vertical lines to help you indent your code accurately.
(Total 5 marks)

Q2.
Write a Python program that allows a taxi company to calculate how much a taxi fare should be.
The program should:
. allow the user to enter the journey distance in kilometres (no validation is required)
. allow the user to enter the number of passengers (no validation is required)
. calculate the taxi fare by
° charging £2 for every passenger regardless of the distance
° charging a further £1.50 for every kilometre regardless of how many passengers there are
. output the final taxi fare.
You should use meaningful variable name(s), correct syntax and indentation in your answer.
The answer grid below contains vertical lines to help you indent your code accurately.
(Total 7 marks)
Q3.

Write a Python program that inputs a character and checks to see if it is lowercase or not.

Your program should work as follows:
. gets the user to enter a character and store it in a suitable variable

. determines if the entered character is a lowercase character
. outputs LOWER if the user has entered a lowercase character
. outputs NOT LOWER if the user has entered any other character.

You should use meaningful variable name(s), correct syntax and indentation in your answer.

The answer grid below contains vertical lines to help you indent your code accurately.
(Total 7 marks)

Q4.

Write a Python program that calculates an estimate of the braking distance in metres for a new model of go-kart that is travelling between 10 and
50 kilometres per hour (kph).

Your program should:

. keep asking the user to enter a speed for the go-kart until they enter a speed that is between 10 and 50 (inclusive)
. calculate the braking distance in metres by dividing the speed by 5

. ask the user if the ground is wet (expect the user to enter yes if it is)

. if the ground is wet, multiply the braking distance by 1.5

. output the final calculated braking distance.

You should use meaningful variable name(s), correct syntax and indentation in your answer.

The answer grid below contains vertical lines to help you indent your code accurately.
(Total 8 marks)

AQAX

Realising potential

Subject Specific Vocabulary

The following list provides definitions of key terms used in our GCSE Computer Science 8525 specification.

Students should be familiar with, and gain understanding from, all these terms.

Variable declaration

Variables are defined as a space in memory, given a name, assigned a value that can be changed while a program is running. Once a variable is declared it is
then assigned a value, this iz called initialization.

Hame £"Bcoch Smith"”

Constant declaration

Constants are similar in definition to variables, the difference in definition being a space in memory, given a name, assigned a value that cannot be changed
while a program is running. Constants are identified in their declaration and should be capitalized:

COMNST FI < 3.14 Assignment

Agsignment iz a term used to show the setting of varables to values.

Answer <FMuml + Humz

Selection
Selection is a blanked term to refer to a programming statement that allows the changing of the flow of the program, based on a condition that is met.
IF Gam= = “won™ THEN
PRINT (“you have won the game")
END IF

The above shows an example of nested selection, that shows if the first condition iz met, then it checks the second selection statement.

Iteration
Iteration is a blanket term to refer to a programming statement that repeats code (loops). This can be both count controlled or condificn controlled.

& 2021 Agm.
Count controlled loop
A loop that has a definite numiber of times to run, thiz can be known as definite iterafion. A for loop is an example of a Count Conirolied loop.

This can also be achieved with a WHILE loop, as long as the loop as a set number of iterations.

£ 2021 Ada

Count controlled loop
A loop that has a definite number of fimes to run, this can be known as definite iterafion. A for loop is an example of a Count Contrelled loop.

This can alzo be achieved with a WHILE loop, as long as the loop as a set number of iterations.

WHILE I <= §
~instructions here... I =1 + 1
END WHILE

Condition controlled loop
Condition controlled loops are those in which the end of the loop is nof known, it will confinue indefinitely until the conditicn is met.

The same effect can be achieved with a REPEAT...UNTIL loop, the benefit of which is that the program can enter the loop, gain an input then test the
condition at the end, making it potentially more efficient.

Revision Activities

For Loops
Computer Experiment 2
This is how a for loop works:

n=10
r n range (10, 20)
n
n=n+1l

Run this program a few times, and for each run change the values in inside the bracket, and
sometimes the number added to n.

Exercise 1
Write a program where the loop runs from 20 to 10 and print these value.

Exercise 2

Write a program where the user enter a number between 10 and 100. A loop runs between 1
and the value entered. Using % remainder print out all the factors of that number.

Exercise 2a

Madify the above program using conditional statements inside a loop, to determine if the
enter number is a prime number. Hint design the program first using a flow diagram.

While loops:
While locops depend on a condition see the following program:

File Edit Format Run Options Window Help

count = 0

while (count < 9):
print 'The count is:', count
count = count + 1

L1} 1 | m

d bye!

Computer Experiment 3

Run the above program change the starting value of count, and the number 9, and run a few
times.

Exercise 3
Write a program where a user enters a number n. The program prints the sentence “tell me
why | don't like mendays?" n times. Can the program be written using both types of loops?

Exercise 4

\Write a program where the user enters their full name, and a letter. The program counts the
number of times the chosen letter is in the name. Hint you will need to use the len(string)
staterment. There is more than one way to write this program.

File Edit Format Run Options Window Help

a=raw_1input ("enter a word")

b: L] z mw
c=a[0]
1L c==
print "the word begins with ",b

Computer Experiment 2
Run the above program a few times. Enter words starting with z and some that do not start
with z. Is the program case sensitive? |.e. does capitalization make any difference?

Exercise 1

Write a program where the person enters their first name. The program determines the
length of the name, and then determines if the name ends with the letter "a". If the name
ends with an a, then the person wins a 1000 dollar prize. The program informs the person
that they have or have not won the prize. You will need to use the len(string) method, look it
up here:

hitps://www.tutorialspeint.com/python/python_strings.htm

Exercise 2

The rules for winning the prize have got stricter. The first name must now have more than 5
characters (as well as end in the letter a). Modify the program in Exercise 1. You will have to
use nested if statements:

hitps:/fwww . tutorialspoint. com/python/nested if statements in python.htm

Can you draw a flow diagram for your program?

checking for many values

~
Il

o Ko
w

"third lowest

"out of range"

x=input ("enter a score between 1 and 9

x>0:
print "within range",x
print "lowest score'
X == 2:
rint"second lowest

"

"GN
Score

score"

Run the program a few times so that you understand how it works. Modify the above
program so that the program prints a comment for every score between 1-9,

Exercise 4

A high level maths students takes a test. Write a program where the student enters their
percentage mark. The program outputs their grade according to:

70% or more grade 7
Between 60 and 69 grade 6
Between 50 and 59 grade 5
Between 40 and 49 grade 4
Between 30 and 39 grade 3
Between 20 and 29 grade 2
Less than 20 a grade 1

