Foundation

Higher

Base (b)

Triangle

Trapezium

Surface Area

Cylinder

$r=$ radius, $h=$ height
Surface area $=2 \pi r h+2 \pi r^{2}$

Cone

Curved surface area $=\pi r l$ Total surface area $=\pi r l+\pi r^{2}$

Sphere

Surface area $=4 \pi r^{2}$

Volume

Cuboid

Volume $=$ length \times width \times height

Prism
Volume $=$ area of cross section \times length

Sphere

Volume $=\frac{4}{3} \pi r^{3}$

Cone

Volume $=\frac{1}{3} \pi r^{2} h$

h

Cylinder

$r=$ radius, $h=$ height
Volume $=\pi r^{2} h$

Pyramid

Volume $=\frac{1}{3} B h$
$B=$ area of base, $h=$ height

$r=$ radius, $d=$ diameter

$$
\text { Area }=\pi r^{2}
$$ Circumference $=\pi d$ or $2 \pi r$

Circles

Arc length $=\frac{\theta}{360} \times \pi d$
Arc sector $=\frac{\theta}{360} \times \pi r^{2}$

Pythagoras

Note: Right angled triangles only

$a^{2}+b^{2}=c^{2}$
c is the hypotenuse
(The longest side)
a and b are the shorter sides.

Trigonometry

Note: Right angled triangles only

$$
\begin{aligned}
& \operatorname{Sin} \theta=\frac{\text { Opposite }}{\text { Hypotenuse }} \\
& \operatorname{Cos} \theta=\frac{\text { Adjacent }}{\text { Hypotenuse }} \\
& \operatorname{Tan} \theta=\frac{\text { Opposite }}{\text { Adjacent }}
\end{aligned}
$$

Circle Theorems

Angle at the centre theorem

A. The angle between a tangent and radius is 90 degrees.
B. Tangents which meet at the same point are equal in length.

Further Trigonmetry

Sine Rule
To find a side:

$$
\frac{a}{\operatorname{Sin} A}=\frac{b}{\operatorname{Sin} B}=\frac{c}{\operatorname{Sin} C}
$$

To find an angle:
$\frac{\operatorname{Sin} A}{a}=\frac{\operatorname{Sin} B}{b}=\frac{\operatorname{Sin} C}{c}$

Area of a triangle
Area $=\frac{1}{2} a b \operatorname{Sin}(C)$

Cosine Rule

To find a side:
$a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos}(A)$

To find an angle:
$\operatorname{Cos} A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

Angles in a Polygon

Exterior angle $=\frac{360}{n}$
$n=$ number of sides
Interior angle + Exterior angle $=180^{\circ}$
Sum of interior angles $=(n-2) \times 180$

Compound Measures

Distance $=$ Speed \times Time Speed $=$ Distance \div Time Time $=$ Distance \div Speed

Mass $=$ Density \times Volume Density $=$ Mass \div Volume Volume $=$ Mass \div Density

Force $=$ Pressure \times Area Pressure $=$ Force \div Area Area $=$ Force \div Area

Straight Lines

Gradient

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Equation of a line

$$
y=m x+c
$$

$$
m=\text { Gradient, } c=y \text { intercept }
$$

Midpoint of 2 points $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2})

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Gradient of perpendicular to line $y=m x+c$
$-\frac{1}{m}$

Quadratics

Quadratic equation

$a x^{2}+b x+c$

Quadratic Formula

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Completing the square

$(x+p)^{2}+q$
$x^{2} \pm b x \pm c=\left(x \pm \frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2} \pm c$

Equation of a Circle

$x^{2}+y^{2}=r^{2}$
$r=$ radius
Centre $=(0,0)$

